doi.bio/ivan_anishchenko


Ivan Anishchenko

Ivan Anishchenko is a researcher in the field of computational biology, currently based at the University of Washington, Seattle, as a postdoctoral researcher and acting instructor.

Education

Anishchenko received his Doctor of Philosophy from the University of Kansas.

Career

Anishchenko's previous affiliations include the University of Kansas and the National Academy of Sciences of Belarus. He has also worked at the United Institute of Informatics Problems, the University of Kansas Center for Computational Biology, and the University of Washington Department of Biochemistry.

Research

Anishchenko's research focuses on protein structure prediction and design, macromolecular docking, and deep learning. He has co-authored 50 publications, with over 5,000 citations, and has an h-index of 18.

Notable Works

Google Scholar Profile

Ivan Anishchenko)

Google Scholar

Ivan Anishchenko Vilya N/A Accurate prediction of protein structures and interactions using a three-track neural network M Baek, F DiMaio, I Anishchenko, J Dauparas, S Ovchinnikov, GR Lee, … Science 373 (6557), 871-876, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:O3NaXMp0MMsC Cited by: 3650

Improved protein structure prediction using predicted interresidue orientations J Yang, I Anishchenko, H Park, Z Peng, S Ovchinnikov, D Baker Proceedings of the National Academy of Sciences 117 (3), 1496-1503, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:e5wmG9Sq2KIC Cited by: 1312

Robust deep learning–based protein sequence design using ProteinMPNN J Dauparas, I Anishchenko, N Bennett, H Bai, RJ Ragotte, LF Milles, … Science 378 (6615), 49-56, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:g5m5HwL7SMYC Cited by: 646

De novo protein design by deep network hallucination I Anishchenko, SJ Pellock, TM Chidyausiku, TA Ramelot, S Ovchinnikov, … Nature 600 (7889), 547-552, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:TFP_iSt0sucC Cited by: 439

The trRosetta server for fast and accurate protein structure prediction Z Du, H Su, W Wang, L Ye, H Wei, Z Peng, I Anishchenko, D Baker, … Nature protocols 16 (12), 5634-5651, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:vV6vV6tmYwMC Cited by: 379

Computed structures of core eukaryotic protein complexes IR Humphreys, J Pei, M Baek, A Krishnakumar, I Anishchenko, … Science 374 (6573), eabm4805, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:lSLTfruPkqcC Cited by: 374

Scaffolding protein functional sites using deep learning J Wang, S Lisanza, D Juergens, D Tischer, JL Watson, KM Castro, … Science 377 (6604), 387-394, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:pqnbT2bcN3wC Cited by: 265

Protein interaction networks revealed by proteome coevolution Q Cong, I Anishchenko, S Ovchinnikov, D Baker Science 365 (6449), 185-189, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:HDshCWvjkbEC Cited by: 236

Improved protein structure refinement guided by deep learning based accuracy estimation N Hiranuma, H Park, M Baek, I Anishchenko, J Dauparas, D Baker Nature communications 12 (1), 1340, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:JV2RwH3_ST0C Cited by: 212

De novo design of luciferases using deep learning AHW Yeh, C Norn, Y Kipnis, D Tischer, SJ Pellock, D Evans, P Ma, … Nature 614 (7949), 774-780, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3s1wT3WcHBgC Cited by: 195

Origins of coevolution between residues distant in protein 3D structures I Anishchenko, S Ovchinnikov, H Kamisetty, D Baker Proceedings of the National Academy of Sciences 114 (34), 9122-9127, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:Wp0gIr-vW9MC Cited by: 182

Protein sequence design by conformational landscape optimization C Norn, BIM Wicky, D Juergens, S Liu, D Kim, D Tischer, B Koepnick, … Proceedings of the National Academy of Sciences 118 (11), e2017228118, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:YFjsv_pBGBYC Cited by: 169

Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: a CASP‐CAPRI experiment MF Lensink, S Velankar, A Kryshtafovych, SY Huang, … Proteins: Structure, Function, and Bioinformatics 84, 323-348, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3fE2CSJIrl8C Cited by: 168

Generalized biomolecular modeling and design with RoseTTAFold All-Atom R Krishna, J Wang, W Ahern, P Sturmfels, P Venkatesh, I Kalvet, GR Lee, … Science 384 (6693), eadl2528, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:zA6iFVUQeVQC Cited by: 110

Protein contact prediction using metagenome sequence data and residual neural networks Q Wu, Z Peng, I Anishchenko, Q Cong, D Baker, J Yang Bioinformatics 36 (1), 41-48, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:mB3voiENLucC Cited by: 96

Dockground: a comprehensive data resource for modeling of protein complexes PJ Kundrotas, I Anishchenko, T Dauzhenka, I Kotthoff, D Mnevets, … Protein Science 27 (1), 172-181, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:9ZlFYXVOiuMC Cited by: 86

Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA M Baek, R McHugh, I Anishchenko, H Jiang, D Baker, F DiMaio Nature methods 21 (1), 117-121, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:fPk4N6BV_jEC Cited by: 60

ProteinGCN: Protein model quality assessment using graph convolutional networks S Sanyal, I Anishchenko, A Dagar, D Baker, P Talukdar BioRxiv, 2020.04. 06.028266, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:RHpTSmoSYBkC Cited by: 51

Efficient and accurate prediction of protein structure using RoseTTAFold2 M Baek, I Anishchenko, IR Humphreys, Q Cong, D Baker, F DiMaio BioRxiv, 2023.05. 24.542179, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:rO6llkc54NcC Cited by: 50

Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design AM Andrianov, IV Anishchenko Journal of Biomolecular Structure and Dynamics 27 (2), 179-193, 2009 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:u5HHmVD_uO8C Cited by: 50

Co-authors

David Baker UKqIqRsAAAAJ

Sergey Ovchinnikov 8KJ9gf4AAAAJ

Petras Kundrotas JvYJSc4AAAAJ

Justas Dauparas jlgADF8AAAAJ

Alexander Tuzikov EL7ilZEAAAAJ

Minkyung Baek HNPzCLoAAAAJ

Hahnbeom Park Y8Tqu4MAAAAJ

Christoffer Norn vd_VO7UAAAAJ

Sam Pellock tyR_l8IAAAAJ

Jianyi Yang OXry1e0AAAAJ

Qian Cong bD4hIqcAAAAJ

Gyu Rie Lee HA-B4T4AAAAJ

Хадарович, Анна Юрьевна (Hadarovi… DoRlAQoAAAAJ

Hetu K FXs0ZQoAAAAJ

Google Scholar

Ivan Anishchenko Vilya N/A Accurate prediction of protein structures and interactions using a three-track neural network M Baek, F DiMaio, I Anishchenko, J Dauparas, S Ovchinnikov, GR Lee, … Science 373 (6557), 871-876, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:O3NaXMp0MMsC Cited by: 3650

Improved protein structure prediction using predicted interresidue orientations J Yang, I Anishchenko, H Park, Z Peng, S Ovchinnikov, D Baker Proceedings of the National Academy of Sciences 117 (3), 1496-1503, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:e5wmG9Sq2KIC Cited by: 1312

Robust deep learning–based protein sequence design using ProteinMPNN J Dauparas, I Anishchenko, N Bennett, H Bai, RJ Ragotte, LF Milles, … Science 378 (6615), 49-56, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:g5m5HwL7SMYC Cited by: 646

De novo protein design by deep network hallucination I Anishchenko, SJ Pellock, TM Chidyausiku, TA Ramelot, S Ovchinnikov, … Nature 600 (7889), 547-552, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:TFP_iSt0sucC Cited by: 439

The trRosetta server for fast and accurate protein structure prediction Z Du, H Su, W Wang, L Ye, H Wei, Z Peng, I Anishchenko, D Baker, … Nature protocols 16 (12), 5634-5651, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:vV6vV6tmYwMC Cited by: 379

Computed structures of core eukaryotic protein complexes IR Humphreys, J Pei, M Baek, A Krishnakumar, I Anishchenko, … Science 374 (6573), eabm4805, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:lSLTfruPkqcC Cited by: 374

Scaffolding protein functional sites using deep learning J Wang, S Lisanza, D Juergens, D Tischer, JL Watson, KM Castro, … Science 377 (6604), 387-394, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:pqnbT2bcN3wC Cited by: 265

Protein interaction networks revealed by proteome coevolution Q Cong, I Anishchenko, S Ovchinnikov, D Baker Science 365 (6449), 185-189, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:HDshCWvjkbEC Cited by: 236

Improved protein structure refinement guided by deep learning based accuracy estimation N Hiranuma, H Park, M Baek, I Anishchenko, J Dauparas, D Baker Nature communications 12 (1), 1340, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:JV2RwH3_ST0C Cited by: 212

De novo design of luciferases using deep learning AHW Yeh, C Norn, Y Kipnis, D Tischer, SJ Pellock, D Evans, P Ma, … Nature 614 (7949), 774-780, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3s1wT3WcHBgC Cited by: 195

Origins of coevolution between residues distant in protein 3D structures I Anishchenko, S Ovchinnikov, H Kamisetty, D Baker Proceedings of the National Academy of Sciences 114 (34), 9122-9127, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:Wp0gIr-vW9MC Cited by: 182

Protein sequence design by conformational landscape optimization C Norn, BIM Wicky, D Juergens, S Liu, D Kim, D Tischer, B Koepnick, … Proceedings of the National Academy of Sciences 118 (11), e2017228118, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:YFjsv_pBGBYC Cited by: 169

Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: a CASP‐CAPRI experiment MF Lensink, S Velankar, A Kryshtafovych, SY Huang, … Proteins: Structure, Function, and Bioinformatics 84, 323-348, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3fE2CSJIrl8C Cited by: 168

Generalized biomolecular modeling and design with RoseTTAFold All-Atom R Krishna, J Wang, W Ahern, P Sturmfels, P Venkatesh, I Kalvet, GR Lee, … Science 384 (6693), eadl2528, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:zA6iFVUQeVQC Cited by: 110

Protein contact prediction using metagenome sequence data and residual neural networks Q Wu, Z Peng, I Anishchenko, Q Cong, D Baker, J Yang Bioinformatics 36 (1), 41-48, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:mB3voiENLucC Cited by: 96

Dockground: a comprehensive data resource for modeling of protein complexes PJ Kundrotas, I Anishchenko, T Dauzhenka, I Kotthoff, D Mnevets, … Protein Science 27 (1), 172-181, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:9ZlFYXVOiuMC Cited by: 86

Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA M Baek, R McHugh, I Anishchenko, H Jiang, D Baker, F DiMaio Nature methods 21 (1), 117-121, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:fPk4N6BV_jEC Cited by: 60

ProteinGCN: Protein model quality assessment using graph convolutional networks S Sanyal, I Anishchenko, A Dagar, D Baker, P Talukdar BioRxiv, 2020.04. 06.028266, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:RHpTSmoSYBkC Cited by: 51

Efficient and accurate prediction of protein structure using RoseTTAFold2 M Baek, I Anishchenko, IR Humphreys, Q Cong, D Baker, F DiMaio BioRxiv, 2023.05. 24.542179, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:rO6llkc54NcC Cited by: 50

Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design AM Andrianov, IV Anishchenko Journal of Biomolecular Structure and Dynamics 27 (2), 179-193, 2009 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:u5HHmVD_uO8C Cited by: 50

Co-authors

David Baker googlescholarauthor_id:UKqIqRsAAAAJ

Sergey Ovchinnikov googlescholarauthor_id:8KJ9gf4AAAAJ

Petras Kundrotas googlescholarauthor_id:JvYJSc4AAAAJ

Justas Dauparas googlescholarauthor_id:jlgADF8AAAAJ

Alexander Tuzikov googlescholarauthor_id:EL7ilZEAAAAJ

Minkyung Baek googlescholarauthor_id:HNPzCLoAAAAJ

Hahnbeom Park googlescholarauthor_id:Y8Tqu4MAAAAJ

Christoffer Norn googlescholarauthorid:vdVO7UAAAAJ

Sam Pellock googlescholarauthorid:tyRl8IAAAAJ

Jianyi Yang googlescholarauthor_id:OXry1e0AAAAJ

Qian Cong googlescholarauthor_id:bD4hIqcAAAAJ

Gyu Rie Lee googlescholarauthor_id:HA-B4T4AAAAJ

Хадарович, Анна Юрьевна (Hadarovi… googlescholarauthor_id:DoRlAQoAAAAJ

Hetu K googlescholarauthor_id:FXs0ZQoAAAAJ

Google Scholar

Ivan Anishchenko Vilya N/A Accurate prediction of protein structures and interactions using a three-track neural network M Baek, F DiMaio, I Anishchenko, J Dauparas, S Ovchinnikov, GR Lee, … Science 373 (6557), 871-876, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:O3NaXMp0MMsC Cited by: 3650

Improved protein structure prediction using predicted interresidue orientations J Yang, I Anishchenko, H Park, Z Peng, S Ovchinnikov, D Baker Proceedings of the National Academy of Sciences 117 (3), 1496-1503, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:e5wmG9Sq2KIC Cited by: 1312

Robust deep learning–based protein sequence design using ProteinMPNN J Dauparas, I Anishchenko, N Bennett, H Bai, RJ Ragotte, LF Milles, … Science 378 (6615), 49-56, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:g5m5HwL7SMYC Cited by: 646

De novo protein design by deep network hallucination I Anishchenko, SJ Pellock, TM Chidyausiku, TA Ramelot, S Ovchinnikov, … Nature 600 (7889), 547-552, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:TFP_iSt0sucC Cited by: 439

The trRosetta server for fast and accurate protein structure prediction Z Du, H Su, W Wang, L Ye, H Wei, Z Peng, I Anishchenko, D Baker, … Nature protocols 16 (12), 5634-5651, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:vV6vV6tmYwMC Cited by: 379

Computed structures of core eukaryotic protein complexes IR Humphreys, J Pei, M Baek, A Krishnakumar, I Anishchenko, … Science 374 (6573), eabm4805, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:lSLTfruPkqcC Cited by: 374

Scaffolding protein functional sites using deep learning J Wang, S Lisanza, D Juergens, D Tischer, JL Watson, KM Castro, … Science 377 (6604), 387-394, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:pqnbT2bcN3wC Cited by: 265

Protein interaction networks revealed by proteome coevolution Q Cong, I Anishchenko, S Ovchinnikov, D Baker Science 365 (6449), 185-189, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:HDshCWvjkbEC Cited by: 236

Improved protein structure refinement guided by deep learning based accuracy estimation N Hiranuma, H Park, M Baek, I Anishchenko, J Dauparas, D Baker Nature communications 12 (1), 1340, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:JV2RwH3_ST0C Cited by: 212

De novo design of luciferases using deep learning AHW Yeh, C Norn, Y Kipnis, D Tischer, SJ Pellock, D Evans, P Ma, … Nature 614 (7949), 774-780, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3s1wT3WcHBgC Cited by: 195

Origins of coevolution between residues distant in protein 3D structures I Anishchenko, S Ovchinnikov, H Kamisetty, D Baker Proceedings of the National Academy of Sciences 114 (34), 9122-9127, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:Wp0gIr-vW9MC Cited by: 182

Protein sequence design by conformational landscape optimization C Norn, BIM Wicky, D Juergens, S Liu, D Kim, D Tischer, B Koepnick, … Proceedings of the National Academy of Sciences 118 (11), e2017228118, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:YFjsv_pBGBYC Cited by: 169

Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: a CASP‐CAPRI experiment MF Lensink, S Velankar, A Kryshtafovych, SY Huang, … Proteins: Structure, Function, and Bioinformatics 84, 323-348, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3fE2CSJIrl8C Cited by: 168

Generalized biomolecular modeling and design with RoseTTAFold All-Atom R Krishna, J Wang, W Ahern, P Sturmfels, P Venkatesh, I Kalvet, GR Lee, … Science 384 (6693), eadl2528, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:zA6iFVUQeVQC Cited by: 110

Protein contact prediction using metagenome sequence data and residual neural networks Q Wu, Z Peng, I Anishchenko, Q Cong, D Baker, J Yang Bioinformatics 36 (1), 41-48, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:mB3voiENLucC Cited by: 96

Dockground: a comprehensive data resource for modeling of protein complexes PJ Kundrotas, I Anishchenko, T Dauzhenka, I Kotthoff, D Mnevets, … Protein Science 27 (1), 172-181, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:9ZlFYXVOiuMC Cited by: 86

Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA M Baek, R McHugh, I Anishchenko, H Jiang, D Baker, F DiMaio Nature methods 21 (1), 117-121, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:fPk4N6BV_jEC Cited by: 60

ProteinGCN: Protein model quality assessment using graph convolutional networks S Sanyal, I Anishchenko, A Dagar, D Baker, P Talukdar BioRxiv, 2020.04. 06.028266, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:RHpTSmoSYBkC Cited by: 51

Efficient and accurate prediction of protein structure using RoseTTAFold2 M Baek, I Anishchenko, IR Humphreys, Q Cong, D Baker, F DiMaio BioRxiv, 2023.05. 24.542179, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:rO6llkc54NcC Cited by: 50

Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design AM Andrianov, IV Anishchenko Journal of Biomolecular Structure and Dynamics 27 (2), 179-193, 2009 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:u5HHmVD_uO8C Cited by: 50

Co-authors

David Baker googlescholarauthorid davidbaker.md:UKqIqRsAAAAJ

Sergey Ovchinnikov googlescholarauthorid sergeyovchinnikov.md:8KJ9gf4AAAAJ

Petras Kundrotas googlescholarauthorid petraskundrotas.md:JvYJSc4AAAAJ

Justas Dauparas googlescholarauthorid justasdauparas.md:jlgADF8AAAAJ

Alexander Tuzikov googlescholarauthorid alexandertuzikov.md:EL7ilZEAAAAJ

Minkyung Baek googlescholarauthorid minkyungbaek.md:HNPzCLoAAAAJ

Hahnbeom Park googlescholarauthorid hahnbeompark.md:Y8Tqu4MAAAAJ

Christoffer Norn googlescholarauthorid christoffernorn.md:vd_VO7UAAAAJ

Sam Pellock googlescholarauthorid sampellock.md:tyR_l8IAAAAJ

Jianyi Yang googlescholarauthorid jianyiyang.md:OXry1e0AAAAJ

Qian Cong googlescholarauthorid qiancong.md:bD4hIqcAAAAJ

Gyu Rie Lee googlescholarauthorid gyurie_lee.md:HA-B4T4AAAAJ

Хадарович, Анна Юрьевна (Hadarovi… googlescholarauthorid хадарович,аннаюрьевна(hadarovi….md:DoRlAQoAAAAJ

Hetu K googlescholarauthorid hetuk.md:FXs0ZQoAAAAJ

Google Scholar

Ivan Anishchenko

Vilya

N/A

Accurate prediction of protein structures and interactions using a three-track neural network M Baek, F DiMaio, I Anishchenko, J Dauparas, S Ovchinnikov, GR Lee, … Science 373 (6557), 871-876, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:O3NaXMp0MMsC

Improved protein structure prediction using predicted interresidue orientations J Yang, I Anishchenko, H Park, Z Peng, S Ovchinnikov, D Baker Proceedings of the National Academy of Sciences 117 (3), 1496-1503, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:e5wmG9Sq2KIC

Robust deep learning–based protein sequence design using ProteinMPNN J Dauparas, I Anishchenko, N Bennett, H Bai, RJ Ragotte, LF Milles, … Science 378 (6615), 49-56, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:g5m5HwL7SMYC

De novo protein design by deep network hallucination I Anishchenko, SJ Pellock, TM Chidyausiku, TA Ramelot, S Ovchinnikov, … Nature 600 (7889), 547-552, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:TFP_iSt0sucC

The trRosetta server for fast and accurate protein structure prediction Z Du, H Su, W Wang, L Ye, H Wei, Z Peng, I Anishchenko, D Baker, … Nature protocols 16 (12), 5634-5651, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:vV6vV6tmYwMC

Computed structures of core eukaryotic protein complexes IR Humphreys, J Pei, M Baek, A Krishnakumar, I Anishchenko, … Science 374 (6573), eabm4805, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:lSLTfruPkqcC

Scaffolding protein functional sites using deep learning J Wang, S Lisanza, D Juergens, D Tischer, JL Watson, KM Castro, … Science 377 (6604), 387-394, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:pqnbT2bcN3wC

Protein interaction networks revealed by proteome coevolution Q Cong, I Anishchenko, S Ovchinnikov, D Baker Science 365 (6449), 185-189, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:HDshCWvjkbEC

Improved protein structure refinement guided by deep learning based accuracy estimation N Hiranuma, H Park, M Baek, I Anishchenko, J Dauparas, D Baker Nature communications 12 (1), 1340, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:JV2RwH3_ST0C

De novo design of luciferases using deep learning AHW Yeh, C Norn, Y Kipnis, D Tischer, SJ Pellock, D Evans, P Ma, … Nature 614 (7949), 774-780, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3s1wT3WcHBgC

Origins of coevolution between residues distant in protein 3D structures I Anishchenko, S Ovchinnikov, H Kamisetty, D Baker Proceedings of the National Academy of Sciences 114 (34), 9122-9127, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:Wp0gIr-vW9MC

Protein sequence design by conformational landscape optimization C Norn, BIM Wicky, D Juergens, S Liu, D Kim, D Tischer, B Koepnick, … Proceedings of the National Academy of Sciences 118 (11), e2017228118, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:YFjsv_pBGBYC

Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: a CASP‐CAPRI experiment MF Lensink, S Velankar, A Kryshtafovych, SY Huang, … Proteins: Structure, Function, and Bioinformatics 84, 323-348, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:3fE2CSJIrl8C

Generalized biomolecular modeling and design with RoseTTAFold All-Atom R Krishna, J Wang, W Ahern, P Sturmfels, P Venkatesh, I Kalvet, GR Lee, … Science 384 (6693), eadl2528, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:zA6iFVUQeVQC

Protein contact prediction using metagenome sequence data and residual neural networks Q Wu, Z Peng, I Anishchenko, Q Cong, D Baker, J Yang Bioinformatics 36 (1), 41-48, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:mB3voiENLucC

Dockground: a comprehensive data resource for modeling of protein complexes PJ Kundrotas, I Anishchenko, T Dauzhenka, I Kotthoff, D Mnevets, … Protein Science 27 (1), 172-181, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:9ZlFYXVOiuMC

Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA M Baek, R McHugh, I Anishchenko, H Jiang, D Baker, F DiMaio Nature methods 21 (1), 117-121, 2024 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:fPk4N6BV_jEC

ProteinGCN: Protein model quality assessment using graph convolutional networks S Sanyal, I Anishchenko, A Dagar, D Baker, P Talukdar BioRxiv, 2020.04. 06.028266, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:RHpTSmoSYBkC

Efficient and accurate prediction of protein structure using RoseTTAFold2 M Baek, I Anishchenko, IR Humphreys, Q Cong, D Baker, F DiMaio BioRxiv, 2023.05. 24.542179, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:rO6llkc54NcC

Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design AM Andrianov, IV Anishchenko Journal of Biomolecular Structure and Dynamics 27 (2), 179-193, 2009 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=Hp8zwAgAAAAJ&citationforview=Hp8zwAgAAAAJ:u5HHmVD_uO8C

Co-authors

David Baker googlescholarauthorid davidbaker.md:UKqIqRsAAAAJ

Sergey Ovchinnikov googlescholarauthorid sergeyovchinnikov.md:8KJ9gf4AAAAJ

Petras Kundrotas googlescholarauthorid petraskundrotas.md:JvYJSc4AAAAJ

Justas Dauparas googlescholarauthorid justasdauparas.md:jlgADF8AAAAJ

Alexander Tuzikov googlescholarauthorid alexandertuzikov.md:EL7ilZEAAAAJ

Minkyung Baek googlescholarauthorid minkyungbaek.md:HNPzCLoAAAAJ

Hahnbeom Park googlescholarauthorid hahnbeompark.md:Y8Tqu4MAAAAJ

Christoffer Norn googlescholarauthorid christoffernorn.md:vd_VO7UAAAAJ

Sam Pellock googlescholarauthorid sampellock.md:tyR_l8IAAAAJ

Jianyi Yang googlescholarauthorid jianyiyang.md:OXry1e0AAAAJ

Qian Cong googlescholarauthorid qiancong.md:bD4hIqcAAAAJ

Gyu Rie Lee googlescholarauthorid gyurie_lee.md:HA-B4T4AAAAJ

Хадарович, Анна Юрьевна (Hadarovi… googlescholarauthorid хадарович,аннаюрьевна(hadarovi….md:DoRlAQoAAAAJ

Hetu K googlescholarauthorid hetuk.md:FXs0ZQoAAAAJ

Youtube Videos

Youtube Title: Journal Club: De novo protein design by deep network hallucination by Anishchenko Ivan et al.

Youtube Link: link

Youtube Channel Name: Surgical Oncology

Youtube Channel Link: https://www.youtube.com/@surgicaloncology616

Journal Club: De novo protein design by deep network hallucination by Anishchenko Ivan et al.

Youtube Title: Evolutionary Hologenomics Podcast ep5: Journal club: food additives, gut microbiome and trout health

Youtube Link: link

Youtube Channel Name: Center for Evolutionary Hologenomics

Youtube Channel Link: https://www.youtube.com/@hologenomics

Evolutionary Hologenomics Podcast ep5: Journal club: food additives, gut microbiome and trout health

Youtube Title: The coming of age of de novo protein design

Youtube Link: link

Youtube Channel Name: Oxford University Scientific Society

Youtube Channel Link: https://www.youtube.com/@oxforduniversityscientific3517

The coming of age of de novo protein design

Youtube Title: On-Demand Webinar: Intro to de novo Protein Sequencing

Youtube Link: link

Youtube Channel Name: Rapid Novor - Protein Sequencing Experts

Youtube Channel Link: https://www.youtube.com/@rapidnovor-proteinsequenci3828

On-Demand Webinar: Intro to de novo Protein Sequencing

Youtube Title: Molecular ML Reading Group (10/25/23): RoseTTAFold All-Atom (Krishna et al., 2023)

Youtube Link: link

Youtube Channel Name: MaomLab at the University of Michigan

Youtube Channel Link: https://www.youtube.com/@maomlab

Molecular ML Reading Group (10/25/23): RoseTTAFold All-Atom (Krishna et al., 2023)

Youtube Title: Linna Ann | De Novo Design of Small Molecule Binding Proteins

Youtube Link: link

Youtube Channel Name: Foresight Institute

Youtube Channel Link: https://www.youtube.com/@ForesightInstitute

Linna Ann | De Novo Design of Small Molecule Binding Proteins

Youtube Title: Ivan Alekseichuk, Dose-Response in Non-Invasive Brain Stimulation (Animal/Cellular Level)

Youtube Link: link

Youtube Channel Name: International Network of Neuroimaging Neuromod

Youtube Channel Link: https://www.youtube.com/@INNN_Network

Ivan Alekseichuk, Dose-Response in Non-Invasive Brain Stimulation (Animal/Cellular Level)

Youtube Title: IQB Crash Course Dec 2021 - "Enabling Protein Structure Prediction w/AI" Intro and Dr Minkyung Baek

Youtube Link: link

Youtube Channel Name: Rutgers - Institute of Quantitative Biomedicine

Youtube Channel Link: https://www.youtube.com/@rutgers-instituteofquantit7931

IQB Crash Course Dec 2021 - "Enabling Protein Structure Prediction w/AI" Intro and Dr Minkyung Baek

Youtube Title: Protein Identification - Sam Mackintosh - IDeA National Resource for Quantitative Proteomics

Youtube Link: link

Youtube Channel Name: IDeA National Resource for Quantitative Proteomics

Youtube Channel Link: https://www.youtube.com/@ideanationalresourceforqua4640

Protein Identification - Sam Mackintosh - IDeA National Resource for Quantitative Proteomics

Youtube Title: Neuromorphic Computing: Ivan Schuller

Youtube Link: link

Youtube Channel Name: American Physical Society

Youtube Channel Link: https://www.youtube.com/@apsphysics

Neuromorphic Computing: Ivan Schuller

Youtube Title: SYNB0.DL6_Methods in Computational Protein Design

Youtube Link: link

Youtube Channel Name: CSBERG

Youtube Channel Link: https://www.youtube.com/@csberg5856

SYNB0.DL6_Methods in Computational Protein Design

Youtube Title: SYNB0.DL5_Mathematics of Protein Design (ML)

Youtube Link: link

Youtube Channel Name: CSBERG

Youtube Channel Link: https://www.youtube.com/@csberg5856

SYNB0.DL5_Mathematics of Protein Design (ML)

Youtube Title: How the Posthuman Helps Us Respond to a Changing World

Youtube Link: link

Youtube Channel Name: Ivan Allen College of Liberal Arts

Youtube Channel Link: https://www.youtube.com/@IvanAllenCollege

How the Posthuman Helps Us Respond to a Changing World

Youtube Title: Success story of Rational Protein designing: Focusing on De Novo Process

Youtube Link: link

Youtube Channel Name: IIT Roorkee July 2018

Youtube Channel Link: https://www.youtube.com/@IITRoorkeeJuly

Success story of Rational Protein designing: Focusing on De Novo Process

Youtube Title: Anishchenko Ivan Fedorovich - veteran of war

Youtube Link: link

Youtube Channel Name: RybnoeNet – Рыбное Онлайн

Youtube Channel Link: https://www.youtube.com/@rybnoe

Anishchenko Ivan Fedorovich - veteran of war

Youtube Title: Training to professional fulfilment: the history of women’s education in Ukraine

Youtube Link: link

Youtube Channel Name: Not So Easy Science

Youtube Channel Link: https://www.youtube.com/@NotSoEasyScience

Training to professional fulfilment: the history of women’s education in Ukraine

Youtube Title: Sergey Ovchinnikov: Inverting protein structure prediction models to solve problems in biology

Youtube Link: link

Youtube Channel Name: Institut Pasteur de Montevideo

Youtube Channel Link: https://www.youtube.com/@institutpasteurdemontevideo

Sergey Ovchinnikov: Inverting protein structure prediction models to solve problems in biology

Youtube Title: Two New TOOLS in the Game – Lab Report 37

Youtube Link: link

Youtube Channel Name: Foldit

Youtube Channel Link: https://www.youtube.com/@UWfoldit

Two New TOOLS in the Game – Lab Report 37