doi.bio/martin_steinegger


Martin Steinegger

Martin Steinegger is an Assistant Professor of Bioinformatics at the Seoul National University. He received his Ph.D. from the Technical University Munich in collaboration with Dr. Johannes Söding at the Max Planck Institute for Biophysical Chemistry.

Steinegger's research focuses on leveraging big data and machine learning algorithms to develop computational methods for analysing complex genomic and proteomic data. He is an expert in large-scale sequence data analysis and method development, with a particular interest in metagenomics, protein structure prediction, and pathogen detection.

Education and Career

Selected Publications

Google Scholar Profile

Martin Steinegger)

Google Scholar

Martin Steinegger Associate Professor, Seoul National University, Korea http://steineggerlab.com/ Highly accurate protein structure prediction with AlphaFold J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Nature, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TQgYirikUcIC Cited by: 24355

ColabFold: making protein folding accessible to all M Mirdita, K Schütze, Y Moriwaki, L Heo, S Ovchinnikov, M Steinegger Nature Methods, 679–682, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:RGFaLdJalmkC Cited by: 4585

MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets M Steinegger, J Söding Nature biotechnology 35 (11), 1026-1028, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:YsMSGLbcyi4C Cited by: 2178

ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing A Elnaggar, M Heinzinger, C Dallago, G Rehawi, Y Wang, L Jones, … IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (8), 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:R3hNpaxXUhUC Cited by: 1240

HH-suite3 for fast remote homology detection and deep protein annotation M Steinegger, M Meier, M Mirdita, H Vöhringer, SJ Haunsberger, J Söding BMC Bioinformatics 20, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:5nxA0vEk-isC Cited by: 844

Clustering huge protein sequence sets in linear time M Steinegger, J Söding Nature communications 9 (1), 2542, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:WF5omc3nYNoC Cited by: 659

Fast and accurate protein structure search with Foldseek M van Kempen, SS Kim, C Tumescheit, M Mirdita, J Lee, CLM Gilchrist, … Nature Biotechnology 42, 243–246, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:_xSYboBqXhAC Cited by: 633

Uniclust databases of clustered and deeply annotated protein sequences and alignments M Mirdita, L von den Driesch, C Galiez, MJ Martin, J Söding, M Steinegger Nucleic Acids Research, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:2osOgNQ5qMEC Cited by: 588

Protein sequence analysis using the MPI bioinformatics toolkit F Gabler, SZ Nam, S Till, M Mirdita, M Steinegger, J Söding, AN Lupas, … Current Protocols in Bioinformatics 72 (1), e108, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:4DMP91E08xMC Cited by: 533

MMseqs2 desktop and local web server app for fast, interactive sequence searches M Mirdita, M Steinegger, J Söding Bioinformatics 35 (16), 2856–2858, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:roLk4NBRz8UC Cited by: 355

Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold M Steinegger, M Mirdita, J Söding Nature Methods 16, 603–606, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UebtZRa9Y70C Cited by: 330

Applying and improving AlphaFold at CASP14 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TFP_iSt0sucC Cited by: 290

High accuracy protein structure prediction using deep learning J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, … Fourteenth critical assessment of techniques for protein structure …, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:HDshCWvjkbEC Cited by: 225

Metagenome analysis using the Kraken software suite J Lu, N Rincon, DE Wood, FP Breitwieser, C Pockrandt, B Langmead, … Nature Protocols, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:M05iB0D1s5AC Cited by: 203

PredictProtein - Predicting Protein Structure and Function for 29 Years M Bernhofer, C Dallago, T Karl, V Satagopam, M Heinzinger, M Littmann, … Nucleic Acids Research, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:hC7cP41nSMkC Cited by: 184

MMseqs software suite for fast and deep clustering and searching of large protein sequence sets M Hauser, M Steinegger, J Söding Bioinformatics 32 (9), 1323-1330, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:d1gkVwhDpl0C Cited by: 179

Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank M Steinegger, SL Salzberg Genome Biology 21, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:KlAtU1dfN6UC Cited by: 165

Fast and sensitive taxonomic assignment to metagenomic contigs M Mirdita, M Steinegger, F Breitwieser, J Söding, E Levy Karin Bioinformatics, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:ZeXyd9-uunAC Cited by: 139

ProtTrans: Towards cracking the language of Life’s code through self-supervised deep learning and high performance computing. arXiv 2020 A Elnaggar, M Heinzinger, C Dallago, G Rihawi, Y Wang, L Jones, … arXiv preprint arXiv:2007.06225, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:b0M2c_1WBrUC Cited by: 97

Clustering predicted structures at the scale of the known protein universe I Barrio-Hernandez, J Yeo, J Jänes, M Mirdita, CLM Gilchrist, T Wein, … Nature, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UxriW0iASnsC Cited by: 95

Co-authors

Milot Mirdita jaTEO_QAAAAJ

Johannes Söding xjYIe80AAAAJ

Burkhard Rost BP3ofxcAAAAJ

Michael Heinzinger yXtPl58AAAAJ

Sergey Ovchinnikov 8KJ9gf4AAAAJ

Christian Dallago 4q0fNGAAAAAJ

Steven Salzberg sUVeH-4AAAAJ

Ahmed Elnaggar fadCsRsAAAAJ

Debsindhu Bhowmik nHwDs_sAAAAJ

Clovis Galiez vmTnjSYAAAAJ

Antonio Fernàndez-Guerra wA7Hrk8AAAAJ

Tom O. Delmont _uZfiVUAAAAJ

Prof. Dr. Frank Oliver Glöckner BmzoT3QAAAAJ

Maria J. Martin kYxN8kQAAAAJ

Vikram Alva nY7NEcYAAAAJ

Andrei Lupas FwQEo_8AAAAJ

John Jumper a5goOh8AAAAJ

Christof Angermueller OXZC0mQAAAAJ

Demis Hassabis dYpPMQEAAAAJ

David Silver -8DNE4UAAAAJ

Google Scholar

Martin Steinegger Associate Professor, Seoul National University, Korea http://steineggerlab.com/ Highly accurate protein structure prediction with AlphaFold J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Nature, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TQgYirikUcIC Cited by: 24355

ColabFold: making protein folding accessible to all M Mirdita, K Schütze, Y Moriwaki, L Heo, S Ovchinnikov, M Steinegger Nature Methods, 679–682, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:RGFaLdJalmkC Cited by: 4585

MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets M Steinegger, J Söding Nature biotechnology 35 (11), 1026-1028, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:YsMSGLbcyi4C Cited by: 2178

ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing A Elnaggar, M Heinzinger, C Dallago, G Rehawi, Y Wang, L Jones, … IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (8), 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:R3hNpaxXUhUC Cited by: 1240

HH-suite3 for fast remote homology detection and deep protein annotation M Steinegger, M Meier, M Mirdita, H Vöhringer, SJ Haunsberger, J Söding BMC Bioinformatics 20, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:5nxA0vEk-isC Cited by: 844

Clustering huge protein sequence sets in linear time M Steinegger, J Söding Nature communications 9 (1), 2542, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:WF5omc3nYNoC Cited by: 659

Fast and accurate protein structure search with Foldseek M van Kempen, SS Kim, C Tumescheit, M Mirdita, J Lee, CLM Gilchrist, … Nature Biotechnology 42, 243–246, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:_xSYboBqXhAC Cited by: 633

Uniclust databases of clustered and deeply annotated protein sequences and alignments M Mirdita, L von den Driesch, C Galiez, MJ Martin, J Söding, M Steinegger Nucleic Acids Research, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:2osOgNQ5qMEC Cited by: 588

Protein sequence analysis using the MPI bioinformatics toolkit F Gabler, SZ Nam, S Till, M Mirdita, M Steinegger, J Söding, AN Lupas, … Current Protocols in Bioinformatics 72 (1), e108, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:4DMP91E08xMC Cited by: 533

MMseqs2 desktop and local web server app for fast, interactive sequence searches M Mirdita, M Steinegger, J Söding Bioinformatics 35 (16), 2856–2858, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:roLk4NBRz8UC Cited by: 355

Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold M Steinegger, M Mirdita, J Söding Nature Methods 16, 603–606, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UebtZRa9Y70C Cited by: 330

Applying and improving AlphaFold at CASP14 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TFP_iSt0sucC Cited by: 290

High accuracy protein structure prediction using deep learning J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, … Fourteenth critical assessment of techniques for protein structure …, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:HDshCWvjkbEC Cited by: 225

Metagenome analysis using the Kraken software suite J Lu, N Rincon, DE Wood, FP Breitwieser, C Pockrandt, B Langmead, … Nature Protocols, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:M05iB0D1s5AC Cited by: 203

PredictProtein - Predicting Protein Structure and Function for 29 Years M Bernhofer, C Dallago, T Karl, V Satagopam, M Heinzinger, M Littmann, … Nucleic Acids Research, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:hC7cP41nSMkC Cited by: 184

MMseqs software suite for fast and deep clustering and searching of large protein sequence sets M Hauser, M Steinegger, J Söding Bioinformatics 32 (9), 1323-1330, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:d1gkVwhDpl0C Cited by: 179

Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank M Steinegger, SL Salzberg Genome Biology 21, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:KlAtU1dfN6UC Cited by: 165

Fast and sensitive taxonomic assignment to metagenomic contigs M Mirdita, M Steinegger, F Breitwieser, J Söding, E Levy Karin Bioinformatics, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:ZeXyd9-uunAC Cited by: 139

ProtTrans: Towards cracking the language of Life’s code through self-supervised deep learning and high performance computing. arXiv 2020 A Elnaggar, M Heinzinger, C Dallago, G Rihawi, Y Wang, L Jones, … arXiv preprint arXiv:2007.06225, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:b0M2c_1WBrUC Cited by: 97

Clustering predicted structures at the scale of the known protein universe I Barrio-Hernandez, J Yeo, J Jänes, M Mirdita, CLM Gilchrist, T Wein, … Nature, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UxriW0iASnsC Cited by: 95

Co-authors

Milot Mirdita googlescholarauthorid:jaTEOQAAAAJ

Johannes Söding googlescholarauthor_id:xjYIe80AAAAJ

Burkhard Rost googlescholarauthor_id:BP3ofxcAAAAJ

Michael Heinzinger googlescholarauthor_id:yXtPl58AAAAJ

Sergey Ovchinnikov googlescholarauthor_id:8KJ9gf4AAAAJ

Christian Dallago googlescholarauthor_id:4q0fNGAAAAAJ

Steven Salzberg googlescholarauthor_id:sUVeH-4AAAAJ

Ahmed Elnaggar googlescholarauthor_id:fadCsRsAAAAJ

Debsindhu Bhowmik googlescholarauthorid:nHwDssAAAAJ

Clovis Galiez googlescholarauthor_id:vmTnjSYAAAAJ

Antonio Fernàndez-Guerra googlescholarauthor_id:wA7Hrk8AAAAJ

Tom O. Delmont googlescholarauthorid:uZfiVUAAAAJ

Prof. Dr. Frank Oliver Glöckner googlescholarauthor_id:BmzoT3QAAAAJ

Maria J. Martin googlescholarauthor_id:kYxN8kQAAAAJ

Vikram Alva googlescholarauthor_id:nY7NEcYAAAAJ

Andrei Lupas googlescholarauthorid:FwQEo8AAAAJ

John Jumper googlescholarauthor_id:a5goOh8AAAAJ

Christof Angermueller googlescholarauthor_id:OXZC0mQAAAAJ

Demis Hassabis googlescholarauthor_id:dYpPMQEAAAAJ

David Silver googlescholarauthor_id:-8DNE4UAAAAJ

Google Scholar

Martin Steinegger Associate Professor, Seoul National University, Korea http://steineggerlab.com/ Highly accurate protein structure prediction with AlphaFold J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Nature, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TQgYirikUcIC Cited by: 24355

ColabFold: making protein folding accessible to all M Mirdita, K Schütze, Y Moriwaki, L Heo, S Ovchinnikov, M Steinegger Nature Methods, 679–682, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:RGFaLdJalmkC Cited by: 4585

MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets M Steinegger, J Söding Nature biotechnology 35 (11), 1026-1028, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:YsMSGLbcyi4C Cited by: 2178

ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing A Elnaggar, M Heinzinger, C Dallago, G Rehawi, Y Wang, L Jones, … IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (8), 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:R3hNpaxXUhUC Cited by: 1240

HH-suite3 for fast remote homology detection and deep protein annotation M Steinegger, M Meier, M Mirdita, H Vöhringer, SJ Haunsberger, J Söding BMC Bioinformatics 20, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:5nxA0vEk-isC Cited by: 844

Clustering huge protein sequence sets in linear time M Steinegger, J Söding Nature communications 9 (1), 2542, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:WF5omc3nYNoC Cited by: 659

Fast and accurate protein structure search with Foldseek M van Kempen, SS Kim, C Tumescheit, M Mirdita, J Lee, CLM Gilchrist, … Nature Biotechnology 42, 243–246, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:_xSYboBqXhAC Cited by: 633

Uniclust databases of clustered and deeply annotated protein sequences and alignments M Mirdita, L von den Driesch, C Galiez, MJ Martin, J Söding, M Steinegger Nucleic Acids Research, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:2osOgNQ5qMEC Cited by: 588

Protein sequence analysis using the MPI bioinformatics toolkit F Gabler, SZ Nam, S Till, M Mirdita, M Steinegger, J Söding, AN Lupas, … Current Protocols in Bioinformatics 72 (1), e108, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:4DMP91E08xMC Cited by: 533

MMseqs2 desktop and local web server app for fast, interactive sequence searches M Mirdita, M Steinegger, J Söding Bioinformatics 35 (16), 2856–2858, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:roLk4NBRz8UC Cited by: 355

Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold M Steinegger, M Mirdita, J Söding Nature Methods 16, 603–606, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UebtZRa9Y70C Cited by: 330

Applying and improving AlphaFold at CASP14 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TFP_iSt0sucC Cited by: 290

High accuracy protein structure prediction using deep learning J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, … Fourteenth critical assessment of techniques for protein structure …, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:HDshCWvjkbEC Cited by: 225

Metagenome analysis using the Kraken software suite J Lu, N Rincon, DE Wood, FP Breitwieser, C Pockrandt, B Langmead, … Nature Protocols, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:M05iB0D1s5AC Cited by: 203

PredictProtein - Predicting Protein Structure and Function for 29 Years M Bernhofer, C Dallago, T Karl, V Satagopam, M Heinzinger, M Littmann, … Nucleic Acids Research, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:hC7cP41nSMkC Cited by: 184

MMseqs software suite for fast and deep clustering and searching of large protein sequence sets M Hauser, M Steinegger, J Söding Bioinformatics 32 (9), 1323-1330, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:d1gkVwhDpl0C Cited by: 179

Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank M Steinegger, SL Salzberg Genome Biology 21, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:KlAtU1dfN6UC Cited by: 165

Fast and sensitive taxonomic assignment to metagenomic contigs M Mirdita, M Steinegger, F Breitwieser, J Söding, E Levy Karin Bioinformatics, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:ZeXyd9-uunAC Cited by: 139

ProtTrans: Towards cracking the language of Life’s code through self-supervised deep learning and high performance computing. arXiv 2020 A Elnaggar, M Heinzinger, C Dallago, G Rihawi, Y Wang, L Jones, … arXiv preprint arXiv:2007.06225, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:b0M2c_1WBrUC Cited by: 97

Clustering predicted structures at the scale of the known protein universe I Barrio-Hernandez, J Yeo, J Jänes, M Mirdita, CLM Gilchrist, T Wein, … Nature, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UxriW0iASnsC Cited by: 95

Co-authors

Milot Mirdita googlescholarauthorid milotmirdita.md:jaTEO_QAAAAJ

Johannes Söding googlescholarauthorid johannessöding.md:xjYIe80AAAAJ

Burkhard Rost googlescholarauthorid burkhardrost.md:BP3ofxcAAAAJ

Michael Heinzinger googlescholarauthorid michaelheinzinger.md:yXtPl58AAAAJ

Sergey Ovchinnikov googlescholarauthorid sergeyovchinnikov.md:8KJ9gf4AAAAJ

Christian Dallago googlescholarauthorid christiandallago.md:4q0fNGAAAAAJ

Steven Salzberg googlescholarauthorid stevensalzberg.md:sUVeH-4AAAAJ

Ahmed Elnaggar googlescholarauthorid ahmedelnaggar.md:fadCsRsAAAAJ

Debsindhu Bhowmik googlescholarauthorid debsindhubhowmik.md:nHwDs_sAAAAJ

Clovis Galiez googlescholarauthorid clovisgaliez.md:vmTnjSYAAAAJ

Antonio Fernàndez-Guerra googlescholarauthorid antoniofernàndez-guerra.md:wA7Hrk8AAAAJ

Tom O. Delmont googlescholarauthorid tomo.delmont.md:uZfiVUAAAAJ

Prof. Dr. Frank Oliver Glöckner googlescholarauthorid prof.dr.frankoliver_glöckner.md:BmzoT3QAAAAJ

Maria J. Martin googlescholarauthorid mariaj._martin.md:kYxN8kQAAAAJ

Vikram Alva googlescholarauthorid vikramalva.md:nY7NEcYAAAAJ

Andrei Lupas googlescholarauthorid andreilupas.md:FwQEo_8AAAAJ

John Jumper googlescholarauthorid johnjumper.md:a5goOh8AAAAJ

Christof Angermueller googlescholarauthorid christofangermueller.md:OXZC0mQAAAAJ

Demis Hassabis googlescholarauthorid demishassabis.md:dYpPMQEAAAAJ

David Silver googlescholarauthorid davidsilver.md:-8DNE4UAAAAJ

Google Scholar

Martin Steinegger

Associate Professor, Seoul National University, Korea

http://steineggerlab.com/

Highly accurate protein structure prediction with AlphaFold J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Nature, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TQgYirikUcIC

ColabFold: making protein folding accessible to all M Mirdita, K Schütze, Y Moriwaki, L Heo, S Ovchinnikov, M Steinegger Nature Methods, 679–682, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:RGFaLdJalmkC

MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets M Steinegger, J Söding Nature biotechnology 35 (11), 1026-1028, 2017 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:YsMSGLbcyi4C

ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance Computing A Elnaggar, M Heinzinger, C Dallago, G Rehawi, Y Wang, L Jones, … IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (8), 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:R3hNpaxXUhUC

HH-suite3 for fast remote homology detection and deep protein annotation M Steinegger, M Meier, M Mirdita, H Vöhringer, SJ Haunsberger, J Söding BMC Bioinformatics 20, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:5nxA0vEk-isC

Clustering huge protein sequence sets in linear time M Steinegger, J Söding Nature communications 9 (1), 2542, 2018 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:WF5omc3nYNoC

Fast and accurate protein structure search with Foldseek M van Kempen, SS Kim, C Tumescheit, M Mirdita, J Lee, CLM Gilchrist, … Nature Biotechnology 42, 243–246, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:_xSYboBqXhAC

Uniclust databases of clustered and deeply annotated protein sequences and alignments M Mirdita, L von den Driesch, C Galiez, MJ Martin, J Söding, M Steinegger Nucleic Acids Research, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:2osOgNQ5qMEC

Protein sequence analysis using the MPI bioinformatics toolkit F Gabler, SZ Nam, S Till, M Mirdita, M Steinegger, J Söding, AN Lupas, … Current Protocols in Bioinformatics 72 (1), e108, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:4DMP91E08xMC

MMseqs2 desktop and local web server app for fast, interactive sequence searches M Mirdita, M Steinegger, J Söding Bioinformatics 35 (16), 2856–2858, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:roLk4NBRz8UC

Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold M Steinegger, M Mirdita, J Söding Nature Methods 16, 603–606, 2019 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UebtZRa9Y70C

Applying and improving AlphaFold at CASP14 J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, … Proteins: Structure, Function, and Bioinformatics 89 (12), 1711-1721, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:TFP_iSt0sucC

High accuracy protein structure prediction using deep learning J Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, … Fourteenth critical assessment of techniques for protein structure …, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:HDshCWvjkbEC

Metagenome analysis using the Kraken software suite J Lu, N Rincon, DE Wood, FP Breitwieser, C Pockrandt, B Langmead, … Nature Protocols, 2022 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:M05iB0D1s5AC

PredictProtein - Predicting Protein Structure and Function for 29 Years M Bernhofer, C Dallago, T Karl, V Satagopam, M Heinzinger, M Littmann, … Nucleic Acids Research, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:hC7cP41nSMkC

MMseqs software suite for fast and deep clustering and searching of large protein sequence sets M Hauser, M Steinegger, J Söding Bioinformatics 32 (9), 1323-1330, 2016 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:d1gkVwhDpl0C

Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank M Steinegger, SL Salzberg Genome Biology 21, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:KlAtU1dfN6UC

Fast and sensitive taxonomic assignment to metagenomic contigs M Mirdita, M Steinegger, F Breitwieser, J Söding, E Levy Karin Bioinformatics, 2021 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:ZeXyd9-uunAC

ProtTrans: Towards cracking the language of Life’s code through self-supervised deep learning and high performance computing. arXiv 2020 A Elnaggar, M Heinzinger, C Dallago, G Rihawi, Y Wang, L Jones, … arXiv preprint arXiv:2007.06225, 2020 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:b0M2c_1WBrUC

Clustering predicted structures at the scale of the known protein universe I Barrio-Hernandez, J Yeo, J Jänes, M Mirdita, CLM Gilchrist, T Wein, … Nature, 2023 Link: https://scholar.google.com/citations?viewop=viewcitation&hl=en&user=D9XIZUAAAAJ&citationforview=D9XIZUAAAAJ:UxriW0iASnsC

Co-authors

Milot Mirdita googlescholarauthorid milotmirdita.md:jaTEO_QAAAAJ

Johannes Söding googlescholarauthorid johannessöding.md:xjYIe80AAAAJ

Burkhard Rost googlescholarauthorid burkhardrost.md:BP3ofxcAAAAJ

Michael Heinzinger googlescholarauthorid michaelheinzinger.md:yXtPl58AAAAJ

Sergey Ovchinnikov googlescholarauthorid sergeyovchinnikov.md:8KJ9gf4AAAAJ

Christian Dallago googlescholarauthorid christiandallago.md:4q0fNGAAAAAJ

Steven Salzberg googlescholarauthorid stevensalzberg.md:sUVeH-4AAAAJ

Ahmed Elnaggar googlescholarauthorid ahmedelnaggar.md:fadCsRsAAAAJ

Debsindhu Bhowmik googlescholarauthorid debsindhubhowmik.md:nHwDs_sAAAAJ

Clovis Galiez googlescholarauthorid clovisgaliez.md:vmTnjSYAAAAJ

Antonio Fernàndez-Guerra googlescholarauthorid antoniofernàndez-guerra.md:wA7Hrk8AAAAJ

Tom O. Delmont googlescholarauthorid tomo.delmont.md:uZfiVUAAAAJ

Prof. Dr. Frank Oliver Glöckner googlescholarauthorid prof.dr.frankoliver_glöckner.md:BmzoT3QAAAAJ

Maria J. Martin googlescholarauthorid mariaj._martin.md:kYxN8kQAAAAJ

Vikram Alva googlescholarauthorid vikramalva.md:nY7NEcYAAAAJ

Andrei Lupas googlescholarauthorid andreilupas.md:FwQEo_8AAAAJ

John Jumper googlescholarauthorid johnjumper.md:a5goOh8AAAAJ

Christof Angermueller googlescholarauthorid christofangermueller.md:OXZC0mQAAAAJ

Demis Hassabis googlescholarauthorid demishassabis.md:dYpPMQEAAAAJ

David Silver googlescholarauthorid davidsilver.md:-8DNE4UAAAAJ

Wikipedia

Martin Steinegger

Summary: Martin Steinegger (born February 15, 1972) is a Swiss professional ice hockey defenceman. He played in the Nationalliga A for EHC Biel and SC Bern. He won the Swiss-A championship in 1997 and 2004 with SC Bern.

URL: https://en.wikipedia.org/wiki/Martin_Steinegger

Page ID: 6869977

Categories:

Links:

Content: Martin Steinegger (born February 15, 1972) is a Swiss professional ice hockey defenceman. He played in the Nationalliga A for EHC Biel and SC Bern. He won the Swiss-A championship in 1997 and 2004 with SC Bern.

International Play On April 24, 2006 Steinegger played his 200th game for the Swiss national team.

Career statistics Regular season and playoffs International External links Biographical information and career statistics from Eliteprospects.com, or Eurohockey.com, or The Internet Hockey Database